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Magnetic Dipole-Dipole Hyperfine Integrals for Slater-Type Orbitals
By
C. A. J. AMMERLAAN and J. C. WOLFRAT

In molecular orbital calculations a linear combination of Slater-type atomic orbitals is frequently
used as a trial wavefunction. To determine hyperfine energies, certain matrix elements, involving
the electron orbitals and the hyperfine interaction operator, are required. In the paper explicit
expressions are reported, which are valid for Slater-type orbitals with principal quantum number
n = 3, and s- or p-type angular dependence. The expressions allow for a fast computation of the
integrals.

In Rechnungen mit molekularen Orbitals werden hédufig lineare Kombinationen atomarer
Orbitals vom Slater-Typ als Wellenfunktion angewandt. Zur Berechnung der Hyperfeinenergie
braucht man bestimmte Matrixelemente, die sich aus den Elektronenorhitals und aus dem Hyper-
feinwechselwirkungsoperator zusammensetzen. In diesem Bericht werden explizite Formeln
gegeben, die ihre Giiltigkeit haben fiir Orbitale vom Slater-Typ mit Hauptquantenzahl n = 3,
und s- oder p-Typ-Winkelabhiingigkeit. Die Formeln erméglichen eine schnelle Berechnung dieser
Integrale.

1. Introduction

The dipole-dipole interaction between an electron, with magnetic moment u, =
= —g.upS, and a nucleus, with magnetic moment uy = gyuyl, is given by the
Hamiltonian H = p, - uy/r® — 3(ue - ) (uy - 7)/r%. For an electron with spatial wave
function ¢ the matrix elements, which are bilinear in the spin operators Sz Sy S,
I,, I, and I, are of the general form g.gyugpuxS - B - I. The components of the sym-
metric tensor B are obtained by integrating the interaction over the spatial part ¢ of
the electron wave function: B,z = (| (3r,rg — 720,p)/7 l), with r the distance to
the magnetic nucleus, and «, 8 = , ¥, z. Singularities in the integrals, due to the
s-part of the wave function: are eliminated by subtracting from the probability
density a non-divergent radial function with equal value at the origin r = 0. The
contact interaction has to be dealt with separately.

To describe the electron, a wave function which is a linear combination of Slater-
type atomic orbitals with principal quantum number n = 3 and s- or p-type angular
part, is adopted. Expressions for the 3s- and 3p-type atomic orbitals are
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with similar expression for sy, ; and ysp, j The coefficients Nyand N, are fixed by

the requirement of normalization: N% = (2u,/a,)?/6!, N3 = (2a,/ae)?/6!, where ay =

= 0.529 X 10-1m is the Bohr radius, while the Slater orbital exponents a, and a,

are, suitably chosen, dimensionless parameters. The orbitals have their centers,

r; = 0, at the various sites in the crystal or molecule around the site of the magnetic

nucleus. The electron wave function is given by ¢ = ¥ ¢iy:, with y; a 3s- or 3p-type
7
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orbital on some site, and c; the appropriate coefficient in the expansion. After sub-
stitution of ¢ into the expression for B,s four different types of terms, as listed below,
are obtained.

Integrals type 1. Both orbitals have their center, r; = 0, on the hyperfine site
at r = 0. As r = r; one obtains familiar one-center integrals. For completeness sake
and for reference the results are reported in the next section.

Integrals type II. For this case one orbital has its center on the hyperfine site,
while the other orbital has its center at a distance B %= 0 from the origin. The resulting
two-center integrals were evaluated using spheroidal coordinates with azimuth
measured around the connecting axis of the two centers. Results, however, only
valid for the special case ay = a,, are given in Section 3.

Integrals type III. For this case both orbitals have a common center at a distance
R == 0 from the magnetic nucleus. This again gives rise to two-center integrals, for
which explicit expressions are given in Section 4.

Integrals type IV. In this most general case the two orbitals involved are centered
on different sites, none of which coincides with the hyperfine site.

2. Integrals Type I

In this simplest situation the B-tensor is axially symmetric, with the axis of sym-
metry coinciding with that of the wave function. If we take the z-direction along
this axis then the B-tensor components for arbitrary form of the radial part R(r)

of the orbital are
2
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with {1/r8), = [ (1/r®) R3(r) 42 dr [[ R3(r) 4mr2 dr. Returning to the specific case of
0 0

Slater-type orbitals, and inserting their radial dependence R (r) = 72 exp (—a,r/ay),
one obtains {1/r%), = (a,/a,e)?/15, with the final result
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Bl, = BL— B, —0.

3. Integrals Type 1I

Let us specify the part of the electron wave function ¢ consisting of orbitals which
have their center on the hyperfine site, r = 0, as oy)3s,0 + £0¥3pz,0 + MoXsps,0 + CoX3pz, 0-
Orbitals centered on the position (0, 0, R), at a distance R from the magnetic nucleus,
similarly form the linear combination oyss ; + &xspe,j + NiXspy, i + Cixsps, - The hyper-
fine tensor components of type II, due to overlap of charges, are then given by

1
Biz = 75 ©00o1lss + &filas + mingluy + Gboiz + onlslis + Looyl)
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Although in principle 96 integrals have to be evaluated, many of these vanish, while
others may be transformed into each other because of existing symmetry, leaving
only eleven independent integrals, denoted I3, I;:, etc. in the above expressions.
Introducing the abbreviations s = a R/ag, p = «,R/a,, ¢ = (sp)'/%, t an arithmetical
average of s and p, the results for the integrals then read

I = [(—s% — 51s5 — 480s* — 264053 — 7560s2 — 15120s) +
+ {In (2s) + y} (12s° 4 144s* 4 900s® 4 3420s* 4 7560s + 7560) 4
+ exp (2s) B (2s) (—12s5 + 144s* — 900s® + 3420s* — 7560s +
-+ 7560)1/45 exp (s) ,

I = [(—p" — 200p® — 3542p° — 30150p* — 163620p3 — 464940p2 — 929880p) -+
+ {In (2p) + y} (40p® + 900p® + 9228p* 4 55980p3 + 210960p 4
-+ 464940p + 464940) +
-+ exp (2p) B, (2p) (40p® — 900p® + 9228p* — 55980p3 -+ 210960p% —
— 464 940p + 464 940)]/15p2 exp (p) ,

I = [(—p? — T8p® — 1256p5 — 10290p* — 55020p® — 154980p% — 309960p) +
1+ {In (2p) + 7} (16p° + 324p° + 3180p* + 18900p° + 70560p2 +
1 154980p + 154980) +
+ exp (2p) Ey(2p) (16p® — 324p5 + 3180p* — 18900p® + 70560p% —
— 154980p + 154980)]/15p2 exp (p) ,

I = [(p® + 75p” + 1100p® + 9628p® + 55020p* + 247800p% +
+ 619920p% + 1239840p) +
+ {In (2p) + 7} (—16p" — 292p® — 2856p> — 18900p* — 89460p3 —
— 296100p% — 619920p — 619920) +
4+ exp (2p) E,(2p) (16p7 — 292p® 4- 2856p5 — 18900p* + 89460p% —
— 296100p% + 619920p — 619920)]/15p2 exp (p) ,
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7
10— (%) V31367 + 15266 + 149065 + 846064 + 370803 - 907202 + 181440t) +

4+ {In (2) + y} (—36(5 — 43265 — 29164 — 1350068 — 4374062 —
— 90720t — 90720) +

1 exp (20) Ey(2t) (—36¢8 4 43265 — 291664 + 135008 — 4374062 +
1+ 90720t — 90720)]/135¢ exp (t) ,

- (%)7 V3 [(—367 — 226(6 — 33285 — 2583014 — 1348203 —
— 3742202 — 7484401) +
4+ {In (2t) + p} (4868 + 8765 + 81004 + 466208 4 17136062 +
+ 374220t + 374220) +
1 exp (2t) E,(2t) (4815 — 876¢5 + 81004 — 466206 + 1713602 —
— 374220t + 374220)]/135¢t exp (¢) ,

I3 = [(—61p® — 1143p% — 9930p* — 54300p® — 154980p% — 309960p) +
+ {ln (2p) + 7} (12p® + 288p5 + 3024p* + 18540p% 4 70200p% +
4+ 154980p + 154980) +
+ exp (2p) E,(2p) (12p® — 288p5 + 3024p* — 18540p3 + 70200p® —
— 154980p 4 154980)]/15p% exp (p) ,

Il = (%)7 V3 [(3t8 4 1615 + 174064 + 1020063 + 302402 + 60480¢) +
+ {In (2t) + 7} (—36t5 — 504¢4 — 34208 — 1350062 —
— 30240t — 30240) 4
+ exp (2t) Ey(2t) (366> — 5044 + 342065 — 1350062 + 30240t —
— 30240)]/45¢t exp () ,

I = (-%—)7 V3 [(—6166 — 102765 — 83704 — 4446068 — 12474082 — 249480¢) +
4+ {In (2t) + } (1208 + 2645 + 2592¢¢ + 1530063 + 56880¢% -
+ 124740t + 124740) +
4+ exp (2t) B, (2t) (128 — 264¢° + 2592¢4 — 1530063 + 5688062 —
— 124740t 4 124740)]/45¢ exp (¢) ,
I = [(61p7 + 1021p® + 9363p5 + 54300p* + 246 360p3 + 619920p2 + 1239840p) +
+ {In (2p) + v} (—12p7 — 264p® — 2736p> — 18540p* — 88740p% —
— 295380p% — 619920p — 619920) +
+ exp (2p) E,(2p) (12p" — 264p% + 2736p° — 18540p* 4 88740p% —
— 295380p2 + 619920p — 619920)]/15p2 exp (p) ,
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T — [(3p” + 295p8 4 4911p5 + 40800p* + 219360p% + 619920p2 + 1239840p) +
+ {In (2p) + 7} (—60p® — 1260p> — 12564p* — 75240p3 — 281880p* —
— 619920p — 619920) +
1 exp (2p) By(2p) (—60p® + 1260p5 — 12564p* + 75240p% — 281880p2 +
1 619920p — 619920)]/15p2 exp (p) .

The results for the 1ntegrals with overlap between an s- and a p-type orbital, i.e.
I%, 1L I and I, are strictly valid only for s = p = ¢ If a, =+ ap, then a best
compromise is obtained by taking ¢ = (s + 3p)/4 for I and Ig, a,nd t=(3s + p)/4

for I} and ILL. Function E,(y) is the exponential integral: J’ dw/x exp (z), for which

. v
tables and approximations are found in mathematical handbooks [1]. The constant
y = 0.5772 is Euler’s constant. In the limit of R — 0 the present results for the type II
components of the B-tensor reduce to those of the previous section.

4. Integrals Type III

As in. the previous section we again take the center of the atomic orbitals at a
distance R from the hyperfine site along the z-direction and use the same expansion
for @. The hyperfine tensor components due to the charge in the orbitals around
position (0, 0, R) are given by

1
B;;I — E_ﬁ O'?'Ign §2IIII + 7]]2-[:}/11 C2IIH + 0‘151151) ,

B?ILI/I R3 ZIIII + §2IIII 2IIII + C2IIII + o,]é‘jlslgl) s
BE = B — B,

1
B%I = s 57771151 ’
1
BL' = Ve (085" + &80

1
78 (omda" + ntdg") .

Only eight independent integrals have to be determined. Defining similarly as before
s = agR[ay, p = a,R|ay, ¢ = (sp)'/% and ¢ = (s + p)/2, the required results are:

111
B =

I = —1 4 (s7 4+ 38 + 185 4 90s* + 360s3 - 1080s% + 2160s +
+ 2160)/2160 exp (s) ,

I = 100 i — (p” + 11p® + 80p°® 4 444p* 4 1896p3 +- 5928p? +
+ 12096p + 12096)/120p2 exp (p) ,
oY = 33. 6 — (p® + 14p® 4 108p* + 552p% + 1896p% 4 4032p +-

+ 4032)/120p2 exp (p) ,
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3L »B# T (p® 4+ 3p8 - 24p7 4 162p8 + 924p5 + 4392p* | 16848p3 -

1+ 49104p? 4 96768p 1 96768)/720p2 exp (p) ,
It = ( ) /3 {_ — (18 4 347 + 2128 + 12665 + 63064 + 252063 +-

+ 75602 + 15120t -+ 15120)/1080¢ exp (t)},

o 6;_% — (7 + 10p® + 66p5 + 336p* - 1344p® 4 4032p2 + 8064p -
+ 8064)/120p* exp (p) ,
I — ( ) V3 {_ — (87 + M5+ 425 + 21064 4 84013 4 252062 4 5040t +
-+ 5040)/360¢ exp (t)},
) 4R p— 26;‘8 (p° + Tp" + 46p° + 270p° -+ 1344p? + B3T6p® + 16128p +

1+ 32256p + 32256)/120p2 exp (p) .

For the special case B = 0 the results for the type Il integrals are identical to those
given in Section 2.

5. Integrals Type 1V

The two orbitals involved have their center on different sites which do not coincide
with the hyperfine site at 7 = 0. For the resulting three-center integrals no analytical
expressions were derived. A method to compute these integrals was outlined by
Steinborn and Ruedenberg [2]. We carried out only some numerical calculations for
the specific values of the Slater orbital exponents ay = 1.87 and o, = 1.60, for the
nearest-neighbor distance in the silicon lattice, B = 2.351 X 107°m. As expected,
from the reduced overlap between the three functions in the integrand, the resulting
values have a tendency of being small. Often, the contributions from the type IV
integrals are negligibly small when compared to the values of the type I, II, and III
integrals.

6. Concluding Remarks

To check for possible errors in the reported formula’s results by using them were
compaired with the results obtained from numerical integrations. This was done for
the specific case of Slater orbital exponents ay = 1.87 and a, = 1.60, for nearest
neighbors and next-nearest neighbors in a silicon lattice, at R = 2.351 x 1071° and
3.839 x 1071 m, respectively. Always the numerical results could be brought into
agreement with the results obtained analytically to within 0.1%,. The time required
for the numerical computations, however, is then about 108 times larger.
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